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Abstract

We aim to design classifiers that have the interpretabifitgssociation rules yet
have predictive power on par with the top machine learniggrthms for classi-

fication. We propose a novel mixed integer optimization (M&Pproach called

Ordered Rules for Classification (ORC) for this task. Ourhmdthas two parts.
The first part mines a particular frontier of solutions in gpace of rules, and we
show that this frontier contains the best rules accordirgmariety of interesting-

ness measures. The second part learns an optimal rankitigefoules to build a

decision list classifier that is simple and insightful. Wpag empirical evidence
using several different datasets to demonstrate the peafore of this method 2

1 Introduction

Our goal in this work is to develop classification models #ivaton par in terms of accuracy with the
top classification algorithms, yet are interpretable, gilgainderstood, by humans. This work thus
addresses a dichotomy in the current state-of-the-ariégsification: On the one hand, algorithms
such as support vector machines (SVM) [1] are highly aceusat not interpretable; for instance,
trying to explain a support vector kernel to a medical dotarot likely to persuade him or her to
use an SVM-based diagnostic system. On the other handithlgsrsuch as decision trees [2, 3] are
interpretable, but not specifically optimized to achiewe liighest in-sample accuracy. Our models
are both interpretable and directly optimized for accurang can be used for applications in which
the user needs accurate predictions as well as an undergjaridhow the predictions are made.

Our models are designed to be interpretable from multiptspeetives. First, the models are de-
signed to beconvincing for each prediction, the model also provides the reasonsvhy this
particular prediction was made, highlighting exactly whiata were used to make that prediction.
To achieve this, we use association rules to build the mdd&dsa type of decision list, that is, a
rank ordered set of rules supported by data. The second wayadels are interpretable involves
their size: these models are designed tadmecise Specifically, our formulations include two types
of regularization. The first encourages rules to have srafithand-sides, so that the reasons given
for each prediction are as sparse as possible. The secoadrages the decision list to be shorter;
the regularization term is the number of rules in the denidigt, which is another form of spar-
sity regularization. There is no single correct way to measuaterpretability, as it is necessarily
subjective. Nevertheless, psychologists have long sudignan ability to process data, and have
shown that humans can simultaneously process only a haofiflgnitive entities, and are able
to estimate relatedness of only a few variables [e.g., 4VW&.aim in this work to achieve a con-
vincing and concise model that captures relationshipséatwariables, which limits the reasoning

1The authorship sequence is alphabetical.
2This work was supported by NSF Grant 11S-1053407.



required by humans to understand and believe its pred&tibnese models allow predictions to be
communicated in words, rather than in equations.

The accuracy of our algorithm results from the use of mixeegar optimization (MIO). Rule learn-
ing problems suffer from combinatorial explosion, in temfi®oth searching through a database for
rules and managing a massive pile of potentially intergstiries. A dataset with even a modest
number of items can contain thousands of rules, thus makatifficult to find useful ones. More-
over, for a set ofL rules, there ard.! ways to order them into a decision list. On the other hand,
MIO solvers are designeateciselyto handle combinatorial problems. There has been tremendou
progress in MIO hardware and software over the last two des;ahd we can now solve large-scale
MIO formulations that were impossible only a few years agno.tle other hand, designing an MIO
problem is more challenging than designing a linear optatidn problem. Our ability to solve an
MIO problem depends critically on the strength of the foratign, which is related to the geometry
of the set of feasible solutions. In this work, we create Mt@niulations for both the problem
of mining rules and the problem of learning to rank them, aond experiments show predictive
accuracy on a collection of datasets at approximately threedavel as some of the top current al-
gorithms in machine learning, including support vector hiaes with Gaussian kernels, C4.5, and
boosted decision trees. This shows that one does not neibessad to sacrifice accuracy to obtain
interpretability, as long as one is willing to take more titngenerate a better solution.

In Section 2, we discuss related work. In Section 3, we statenotation and derive an MIO for-
mulation for association rule mining. In Section 4, we présas MIO learning algorithm that uses
rules to build a classifier. Sections 5 and 6 demonstratecitigracy and interpretability respectively
of our classifiers. We conclude in Section 7. Note that thiephighlights our key ideas and results,
but we include additional information in a longer versiortloé paper [6], including: an extended
related work section, a more general MIO formulation folergeneration, supplementary details
about our experiments, and additional examples of intéapildty.

2 Related Work

Association rule mining was first introduced by Agrawal e{ @] for market-basket analysis, where
the goal was to discover sets of items that were often puechasyether. Since the introduction
of the Apriori method [8], various algorithms for rule migimave applied heuristic techniques to
traverse the search space of possible rules [9]. Thougltiasen rules were originally designed
for data explorationassociative classificatiolater developed as a framework to use the rules for
classification, with algorithms such as CBA, CMAR, and CPAR,[11, 12], just to name a few.
Methods to build a classifier using a sorted set of assoaiatiles fall into two categories: those that
predict based on multiple rules, and those that predicibaséhe highest applicable rule in a ranked
list of rules. The first category uses more information bgsifying based on a sort of majority vote
of applicable rules, but in general has two major disadygada first, it ignores the dependency
between rules, so two rules that are almost exactly the sameetivo separate votes instead of one;
and second, the model loses interpretability by combinigsrtogether. Models that combine the
votes of various rules are similar to the Logical Analysidafta (LAD) model [13]. The second
category of sorted-rule-based classification algorithmodpces decision lists [14]. These classifiers
are simple to understand and use the highest ranked rulesddiction. However, if the list is not
properly ordered, it may not yield an accurate classifierci€len lists can be created by ordering
rules according to an interestingness measure. Alteeigtithe ordering of rules can be learned
from data, which is the approach we take here. Further gblatek is presented in [6].

3 Mining Optimal Association Rules

In this section, we describe an MIO method to generate rolehé purpose of binary classification.
(The method can be trivially extended to multi-class cfassion.) We use the following standard
notation: letZ = {1,...,d} be a set of items, and C 7 be an itemset. LeD be a database
of itemsets. Each itemset or row in the database is calleahadction, and each transaction has a
class attribute if —1, 1}. For example, the transactions might be medical patiemsitéms might

be various possible symptoms, and the two classes mightibedske 1” and “disease 2.” We want



Table 1: The body of the rule is in transactionsince (1) and (2) are satisfied.

1
t; (1 ifitem j in transaction) | 1
b (1lifitem jin body of rule) | 1
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Table 2: Interestingness measures.

[ Measure Definition | Measure Definition |
Confidence/Precision i Conviction 1:;5){
Recall i Laplace Correction n’;;trlk k is number of classes$
Accuracy 1—sx — sy +2s | Piatetsky-Shapiro s — sxsy
Lift/Interest . SSY

to find association rules of the fortd = —1 or X = 1; the first rule means that a transaction
containingX is in class—1, and the second means that a transaction contaikirgin class 1.

Let there ben transactions in the databa®g and lett; € {0,1}¢ represent transaction In
particular,t;; = 1jyansaction includesitemj] for 1 < @ < nand1 < j < d. Note that thet; are data
rather than decision variables in the optimization problem

There are two sets of decision variables. Firstblet {0,1}? represent the bod) of a rule:

bj = 1jex)forj =1,...,d. Second, let; = 1jyansaction includesx] fori = 1,...,n. Letey be the
d-vector of ones. Each point in the speRalefined by the following constraints corresponds to the
body X of arule (takeX = {j : b; = 1} to obtainX from a feasible):

x; <1+ (ti; — Dby, Vi, 7, Q)
;> 1+ (t; —eq)'h, Vi, )
b; € {0,1}, Vi, (3)
0<a; <1, Vi (4)

To understand (1), consider the two cages= 0 andb; = 1. If b; = 0, then the constraint is just
x; < 1, so the constraint has no effect.blf = 1, then the constraint is; < ¢;;. Thatis, ifb; =1
(item j is in X) butt¢;; = 0 (item j is not in transactior), thenz; = 0. This set of constraints
implies thatx; = 0 if transactioni does not includeéX'. We need (2) to enforce; = 1 if transaction

iincludesX . Note that? b is the number of items in the intersection of transactiand X, andel'b

is the number of items itX'. This constraint is valid becausgb = Z;l:l tijb; < ijl bj = elb,
where equality holds if and only if transactiomcludesX and otherwise? b < eIb — 1. Table 1

helps to clarify (1) and (2).

The spaceéP defined by (1) through (4) hasbinary variablesp continuous variables, anéi + n
constraints. Here we explain why we do not need an expliggirality constraint on the; variables,
that is, why we have (4) instead of € {0, 1} for all i. There are two cases when deciding whether
X isintransaction. Ifitis, then (2) says:; > 1, which impliesz; = 1. Ifitis not, then there exists

j such that;; = 0 andb; = 1, so (1) says; < 0 for someyj, which impliesz; = 0. Thus in either
casey; is forced to be an integer, regardless of whether we spdafyan integer variable. Having
fewer integer variables generally helps speed up computati

Our algorithm outputs one rule at a time, for a specified détsibute. Lety € {—1, 1} be the class
for which we are mining rules, and I6t= {i : transaction has class labeJ}. Also, let

D LIS
S = — . = — = — .
X N - Ti, SY n y S n - Ly
i=1 €S
calledcoverage prevalenceandsupportrespectively. Note that all rules for a given class have the
samesy. We can capture other interestingness measures 4singy, ands, some of which are

listed in Table 2.

Many interestingness measures, including those in Tabilecease with decreasingy (holding
s constant) and increasing (holding sx constant). Thus the rules that optimize each of these



measures fall along an efficient frontier of rules with maaimand minimalsx. We can find each
rule on the frontier by putting an upper boundgpand maximizings. Formulation (5) maximizes
the “scaled support™{( - s) for a certain choice ofx, wheresx denotes the user-specified upper
bound on the “scaled coverage? (sx). We vary the upper bound over all possible values from
largest to smallest to produce the entire frontier (fronhtig left).

n

d
HZ}aX Z Ty — Rgenx Z Ty — Rgenb Z bj (5)
X j=1

€S =1
S.t. ixz < Sx,
=1
(b,x) € P. (defined in (1), (2), (3), (4)

The first term in the objective is the scaled support. Thersg@term corresponds to the coverage
sx; if there are multiple rules with optimal support, we wardgk with smaller coverage. The third
term is a regularization term, and corresponds to the dparkthe rule; if there are multiple rules
that maximizes and have equaly, we want those with smaller bodies, that is, more zeras rhe
parametersgenx and Rgenp control the weight of these terms in the objective, whereftinmer
ensures that we properly trace out the frontier, and therlatiuld potentially trade-off sparsity for
closeness to the frontier.

Solving (5) once for each possible valuesf does not yield the entire frontier since there may
be multiple optimal rules at each point on the frontier. Talfather optima, we add constraints
making each solution found so far infeasible, so that theyoaibe found again when we re-solve.
Specifically, we iteratively solve the formulation as foller Letb* be the first optimum we find

for (5). We add the constraint
Yobi+ Yy (L-b)=1 (6)
j:b;:() j:b;f:l

to the formulation. This constraint says that in the veéiat least one of the components must be
different from in the previous solution; that is, at leaseai the zeros must be a one or one of the
ones must be a zero. Then we solve again. If we find anothenaptj then we repeat the step above
to generate another constraint and re-solve. If the optumlale of _,_ . z; decreases, then we set
the upper bound ohx to a new value and iterate again. This new value is the minimL;._, z;
andsx — 1 (previous bound minus one); we know that no rule on the redwiof the frontier has
scaled coverage greater thafl", z;, so using this as the bound provides a tighter constraimt tha
usingsx — 1 wheneverd_"" | z; < §x — 1. Using a similar method, we could also find a band of
rules below the frontier if we wanted to expand our set ofsule

The rule generation algorithm, called “RuleGen” is summediin Figure 1. This algorithm al-
lows optional minimum coverage thresholélsncov_; andmincov; to be imposed on each of
the classes of rules. Alsdter_lim limits the number of times we iterate the procedure above
with adding (6) between iterates for a fixed valuesgf. To find all rules on the frontiers, set
mincov_; = mincov; = 0 anditer_1im = oo. Figure 2 illustrates the steps of the algorithm.

In [6], we present a formulation for mining general assaeiatules of the formX = Y, whereY’
can be any itemset that is disjoint with, instead of a class attribute.

4 Building a Classifier

Suppose we have generatedules, where each rulgis of the formX, = —1 or X, = 1. Our task

is now to rank them into a decision list for classification.affgfor ease of exposition, we consider
binary classification, though the method extends to mids problems. Given a new transaction,
the decision list classifies it according to the highest eahtule/ such thatX, is in the transaction,
or the highest rule that “applies” to the transaction. Irstbéction, we derive an empirical risk
minimization algorithm using MIO that yields an optimal kémg of rules. That is, the ranking
returned by our algorithm optimizes the (regularized)sifacation accuracy on a training sample.

We always include in the set of rules to be ranked two “nukstil) = —1, which predicts class 1
for any transaction, an@l = 1, which predicts class 1 for any transaction. In the final iagkthe



Input: mincov_j,mincovy, iter_lim
for Yin {-1,1} do
Initialize sx < n, iter<- 1,5+ 0
Initialize collection of rule bodieRy = 0
repeat
if iter = 1then
Solve (5) to obtain ruleX = Y
S ZiES xT;
iter < iter + 1
end if
Ry < Ry UX
Add new constraint (6)
if iter < iter_limthen
Solve (5) to obtain ruléX = Y
if ,cs®i < 5then
Sx < min (Z?:l Ti, 85X — 1)
iter+ 1
else
iter « iter+ 1
end if
else
Sx < 8x — 1
iter« 1
end if
until 5x < n-mincovy
end for

Figure 1: RuleGen Algorithm.
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Figure 2: Decrease upper bound (dashed vertical line)
starting froms x = n to generate the frontier, one point
at a time, from right to left.

Parameters:
1 ifrule ¢ correctly classifies transactian

pie = ¢ —1 ifrule ¢ incorrectly classifies transactian
0 if rule £ does not apply to transactian

Vie = l[ruleé applies to transactiof] = |pz’z|.
Riank = regularization parameter

Variables:
r¢ = rank of rulet,
r. = rank of higher null rule,

Ui = 1[ru|el is the rule that predicts the class of transactipn

Figure 3: Parameters and decision variables.

higher of the null rules corresponds effectively to the twotbf the ranked list of rules; all examples

that reach this rule are classified by it, thus the class diptgis the default class. We include both

null rules in the set of rules because we do not know whicheftlvould serve as the better default,
that is, which would help the decision list to achieve thenleigt possible classification accuracy; our
algorithm learns which null rule to rank higher.

Figure 3 shows the parameters and decision variables obtheufation we derive here to rank a list
of rules. Ther, variables store the ranks of the rules;is the rank of the default rule, which we
want to be high for conciseness. Thg variables help capture the mechanism of the decision list,
enforcing that only the highest applicable rule predicesdtass of a transaction: for transaction
u;¢ = 0 for all except one rule, which is the one, among those thalyapjith the highest rank:,.

The formulation we designed to build the optimal classifser i

max
T Ta,g5U, 8,03

S.t.

n L
Z Z Dietie + Rrankrs

i=1 =1

L
E Uip = 1, Vi,
=1

gi = VT,

Vi, £,

gi < viere + L(1 — uye),
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Vi, £,

Uig < Vi,

L

E s =1,
h=1

L

E Sep = 1,
=1

Ve,

Vi,

re€{1,2,...,L},

L
7) re =Y ksu, VL, (15)
k=1

Ty 2 TA, (16)
8) Ty > TR, a7
re =74 < (L—1)a, (18)
. 9) ra—re < (L—1)a, (19)
vi, £, (10) re—rp < (L-1)8, (20)
(1) re—r. < (L-1)8, (21)
(12) a+pB=1, 22)
(13) g S1-S—L Vil (23)

QL Uig, Sek € {071}5 Vivévka

(14) 0<p<,

Ve.



We use (7) to refer to the entire MIO formulation and not jingt dbjective function. The first term
in the objective corresponds to classification accuracyeGan ordering of rules, the quantity—
ZéL:lpiguig equals 1 if the resulting decision list correctly predidts tlass of transactionand
—1 otherwise. Thus, the number of correct classifications s, (<52) = 3 (n + 37, ¢;). So
to maximize classification accuracy, it suffices to maxin¥28 , ¢; = Y7, S°F | pieuse. Table 3
shows an example of the parameterg)(and variablesi(, u;¢) for a particular ranking of rules and
transaction to be classified. We note that since this algordtirectly optimizes the 0-1 classification
error, it has the property of being robust to outliers.

Table 3: Transaction; is represented byl 0 1 1 G, and its class is-1. The highest rule that
applies is the one ranked 8th,(= 8) since{10100c{101 1 (the rules ranked 10th and
9th do not apply). Thus,, = 1 for this rule. This rule hap;, = 1 since the rule applies tg and
correctly predicts-1, so the contribution of transactiano the accuracy part of the objective in (7)

. L
IS 2521 DieUip = 1.

Transactiort;: {10110, class=1

Ranked rules Pie  Te Ui
{0100} = -1 0 10 O
{01100 =1 0 9 0
{10100 = -1 1 8 1
{1000 = —1 0 7 0
{0000G =1 -1 6 0
{00110 = -1 1 1 0

Constraint (8) enforces that for eathonly one of theu,;, variables equals one while the rest are
zero. To capture the definition af,, we use an auxiliary variable;, which represents the rank
of the highest applicable rule for transactionThrough (9) and (10), there is only odeuch that
u;e = 1 is feasible, namely thé corresponding to the highest value @fr,. Constraints (11)
and (12) are not necessary but help improve the linear riétaxand thus are intended to speed up
computation. We assign the integral ramksising (13) through (15), which imply;, = 1 if rule ¢

is assigned to rank. The matching between ranks and rules is one-to-one.

We add a new type of regularization to favor a shorter ovéisalbf rules by pulling the rank of the
higher null rule as high as possible.rlf is the rank of) = —1 andrp is the rank of) = 1, then
we addr, to the objective function, where. is the maximum of-4 andrg. The regularization
coefficient ofr,. in the objective isRiank. We capture-, using (16) through (22): Either = 1 and
B8 =0,orelses = 1anda = 0. If « = 1, thenr, = rg. If 3 = 1, thenr, = r4. Since we are
maximizingr., we knowr, equals the higher of 4 andrg. Note that if« is binary, thens need
not be binary because the constraint- 3 = 1 forces integral values fgs. If the rankr, of rule ¢
is belowr,, thenu;, = 0 for all 7, so (23) is valid, and we include it to help speed up compuortati

The Ordered Rules for Classification (ORC) algorithm cdrsi§ generating rules using RuleGen,
computing thep;, andv,¢, and then solving the formulation in (7). Note that RuleGed é7) can
be used independently of each other if one desires to usaliefor a different purpose, or to use
a set of already established rules to construct the dedision

5 Computational Results

We used a number of publicly available datasets to demdastra performance of our approach.
Crimel and Crime2 are derived from a study funded by the USaBeent of Justice [15]. Titanic
is from a report on the sinking of the “Titanic” [16]. All othreare from the UCI Machine Learning
Repository [17]. For each dataset, we divided the data guatd three folds and used each fold
in turn as a test set, training each time with the other twd<olThe training and test accuracy
were averaged over these three folds. We compared the ORGthig with six other classification
methods—Iogistic regression, Support Vector MachinesM¥ 4], Classification and Regression
Trees (CART) [2], C4.5 [3] (348 implementation), Randomdats [18], and AdaBoost [19]—all



run using R 2.15.0. We used the radial basis kernel and négati@n parametef’ = 1 for SVM
(results for othe” values are in [6]), and decision trees as base classifieAd@Boost. The ORC
algorithm was implemented using ILOG AMPL 11.210 with ther@i solver.

Here we explain how we chose the parameter settings for the €fReriments. In generating rules
with (5), we wanted to ensure th&enx was small enough that the solver would never choose to
decrease the scaled supp@;es x; just to decrease the scaled coverigl@:1 x;. That is, Rgenx
should be such that we would not sacrifice maximizirfgr lower sx; this required only that this
parameter be a small positive constant, so we cliggx = On;l. Similarly, we did not want to

sacrifice maximizing or loweringsx for greater sparsity, so we chofgenn = In order to
not sacr|f|ce classification accuracy for a shorter deciksdim ranking the rules W|ff1 (7), we chose

Rrank = f. We also usedincov_; = mincov; = 0.05 anditer_lim = 5.

Table 4 shows the average training and test classificatiouracy for each dataset; corresponding
standard deviations are in [6]. Bold indicates the highestage in the row. Table 5 shows the
dataset sizes as well as average number of rules generatdl®@en and average runtimes for
our algorithms f-one standard deviation); runtimes for the other method® wew small to be
a significant factor in assessment. Tinie the total time for generating all rules; Timeés the
time when the final solution for (7) was found, either befarkving to optimality or before being
terminated after a specified time limit. We generally teratéa the solver before (7) solved to
provable optimality. Note that often an MIO solver finds atimpim quickly but takes a much longer
time to prove optimality, thus terminating eadipes not implthat we do not have an optimum.
These results show that in terms of accuracy, the ORC altgorig on par with top classification
methods. The longer version of this paper [6] contains mafi@ination on all ORC experiments,
including accuracies and runtimes on each fold.

Table 4: Classification accuracy (averaged over three¥olds

[ [ IR [ SVWM [ CART [ C45 [ RF [ ADA [ ORC |
B.Cancer train| 0.9780 [ 0.9846 | 0.9561 | 0.9671 | 0.9876 | 0.9693 | 0.9766
test | 0.9502 | 0.9619 | 0.9488 | 0.9590 | 0.9575 | 0.9605 | 0.9532
CarEval train | 0.9580 | 0.9821 | 0.9659 | 0.9907 | 0.9997 [ 0.9959 | 0.9598
test | 0.9485 | 0.9728 | 0.9618 | 0.9815| 0.9826 | 0.9890 | 0.9508
Crimel train | 0.8427 | 0.8439 | 0.8380 | 0.8932 | 0.9918 | 0.8885 | 0.8897
test | 0.7394 | 0.7394 | 0.7488 | 0.7465| 0.7629 | 0.7723 | 0.7817
Crime2 train | 0.6812 | 0.7477 | 0.6858 | 0.7409 | 0.8211 | 0.7156 | 0.7133
test | 0.6722 | 0.6354 | 0.6171 | 0.5941 | 0.6239 | 0.6630 | 0.6699
Haberman  train| 0.7712 | 0.7876 | 0.7680 | 0.7745 | 0.7892 | 0.7712 | 0.7680
test | 0.7582 | 0.7386 | 0.7418 | 0.7386 | 0.7386 | 0.7320 | 0.7582
Mammo train | 0.8482 | 0.8687 | 0.8422 | 0.8596 | 0.8837 | 0.8560 | 0.8536
test | 0.8374 | 0.8217 | 0.8301 | 0.8301 | 0.8289 | 0.8422 | 0.8337
MONK2 train | 0.6470 | 0.6736 | 0.7500 [ 0.9317 | 0.9907 | 0.7940 | 0.8299
test | 0.6019 | 0.6713 | 0.6690 | 0.8866 | 0.6528 | 0.6389 | 0.7338
SPECT train | 0.8783 [ 0.8633 [ 0.8390 | 0.8801 | 0.9363 | 0.8839 | 0.8970
test | 0.7978 | 0.8464 | 0.7828 | 0.7940 | 0.8090 | 0.8052 | 0.7753
TicTacToe  train| 0.9833 | 0.9494 [ 0.9348 | 0.9796 | 1.0000 [ 0.9917 | 1.0000
test | 0.9823 | 0.9165 | 0.8873 | 0.9259 | 0.9781 | 0.9770 | 1.0000
Titanic train | 0.7783 | 0.7906 [ 0.7862 | 0.7906 | 0.7906 | 0.7862 | 0.7906
test | 0.7783 | 0.7847 | 0.7846 | 0.7906 | 0.7833 | 0.7797 | 0.7906
Votes train | 0.9816 | 0.9747 | 0.9598 | 0.9724 | 0.9954 | 0.9701 | 0.9747
test | 0.9586 | 0.9563 | 0.9540 | 0.9586 | 0.9586 | 0.9586 | 0.9563

Table 5: Number of transactiong)( number of itemsd), average number of rules generated,
average time to generate all rules (Tifheaverage time to rank rules (Tir)e

[ Dataset [ n d ] #Rules Time, (sec) Times (sec) |
B.Cancer 683 27| 198.3+16.2 616.3 + 57.8 12959.3 + 1341.9
CarEval 1728 21 58.0 706.3 +177.3 7335.3 4+ 2083.7
Crimel 426 41 | 100.7 £ 15.3 496.0 + 88.6 12364.0 4 7100.6
Crime2 436 16 27.34+2.9 59.3 + 30.4 2546.0 £ 3450.6
Haberman | 306 10 15.3 + 0.6 14.7 £ 4.0 6.3 £2.3
Mammo 830 25 58.3+ 1.2 670.7 + 34.5 3753.3 + 3229.5
MONK2 432 17 45.3 £ 4.0 124.0 £ 11.5 5314.3 4+ 2873.9
SPECT 267 22 145.3 £ 7.2 71.74+9.1 8862.0 £ 2292.2

TicTacToe 958 27 53.3 3.1 1241.3 £+ 38.1 4031.3 + 3233.0
Titanic 2201 8 24.0+ 1.0 92.0 £ 15.1 1491.0 £+ 1088.0
\otes 435 16 | 266.0 4+ 34.8 108.3 £ 5.0 21505.7 £+ 1237.2




win X win X
1 54 X 2[ 61 X
54 X 61 X
win X X X win
3| 42 4| 54
42 54 X X X
(win) win X win X
5| 57 X 6| 61 X
(nowin) 57 X 61 X
win X win
7| 54 X 8| 55 X | X X
(nowin) 54 X 55
ves no (nowin) (win)
onr 021 N no win
0 1 . .
(nowin)  {win) Figure 5: Ranked rules for Tic-Tac-Toe
data (with predicted class, andsx on
Figure 4: CART classifier for Tic-Tac-Toe data. left side).

6 Interpretability

Interpretability is subjective, but in this section, we aimmdemonstrate that the ORC classifier
performs well in terms of being easy to understand. Classifienerated by CART and C4.5 are
interpretable because of their decision tree structuréemnethods are not as easily interpreted.
For example, the logistic regression modepis- m wherep is the probability that the

class of observatiotis 1. The SVM model is a hyperplane that maximizes the margiwéen the
hyperplane and the closest point to it from both classessmglkernels, we can raise the dimension
of the model and achieve high accuracy, but not interpritiabi hough there is work devoted to
interpreting SVMs, the result is usually a smaller set of limear features, still within a linear
combination [20]. AdaBoost combines weak classifiers—slenitrees in our experiments—by
minimizing an exponential loss function; thus, even thotighbase classifiers may be interpretable,
the final model is not necessarily as interpretable. Randoredsts also combines trees.

We give an example using the Tic-Tac-Toe dataset from SeéticEach point in this dataset rep-
resents a board configuration at the end of a Tic-Tac-Toe gamee player x played first, and the
task is to identify whether player x won. Each of the ninedieas in the data represents a square on
a Tic-Tac-Toe board. The possible values for each feat@exaro, or blank. Figure 4 shows the
CART classifier from training on Folds 1 and 2, which achiexésst accuracy on Fold 3 of 88.1%
(average of 88.7% over all folds). The interpretation atrthet node is “If there is an ‘0’ in box 5,
then go left, otherwise go right,” and similarly for the otm®des. The 21 leaves of the CART tree
each predict whether the corresponding path implies a winbbard configuration for ‘x’. The
C4.5 tree achieves a higher test accuracy of 92.8% on Folde3a@e of 92.6% over all folds), but
is even larger with 36 leaves, and is thus less interpretdthle ORC classifier, shown in Figure 5,
turns out to just use nine rules. It decides the class of adibarsame way a typical human would:
if the board has three x’s in a line, which can occur in eigffedént configurations, then player x
wins; otherwise, player x does not win. It achieves perfething and test accuracy.

There are several additional examples of the interprétybil the ORC classifier in [6]. We show
that in general, ORC produces a consistently concise maagbared with C4.5. The ORC models
tend to be larger than the CART trees, but are also more aecura

7 Conclusion

Our computational experiments show that ORC competes wadkins of training and test accuracy
against the top classification algorithms on a variety ofsts. Since our paper is among the
first to use MIO methods for machine learning, and in paréictd create decision lists using exact
approaches, it opens the door for further research on hovsg¢ooptimization-based approaches
for rule mining, forming interpretable classifiers, and tliémy new forms of regularization. The
bottom line is that there is not necessarily a trade-off leetwaccuracy and interpretability. It is
truly possible to have both.
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